As séries de Fourier são análogas as séries de Taylor no sentido em que ambas séries fornecem uma forma

de representar funções relativamente complicadas em termos de funções elementares e familiares. Se a série de Fourier converge então ela representa uma função f(x) e podemos representar essa relação da seguinte forma: f left parenthesis x right parenthesis space equals space a subscript 0 over 2 plus thin space sum from n equals 1 to infinity of space a subscript n space cos open parentheses nπx over straight L close parentheses space plus b subscript n space s e n open parentheses nπx over straight L close parentheses Disponível em:Acesso.11.Jan.2017. A determinação do coeficiente a subscript n é dada pela seguinte formula. Escolha uma: a. a subscript n space equals space integral subscript negative L end subscript superscript L f left parenthesis x right parenthesis space s e n open parentheses fraction numerator n pi x over denominator L end fraction close parentheses space d x space comma space space space space space n equals 1 comma 2 comma 3.. b. a subscript n space equals space 1 over L integral subscript negative L end subscript superscript L f left parenthesis x right parenthesis space s e n open parentheses n pi x close parentheses space d x space comma space space space space space n equals 1 comma 2 comma space 3.. c. a subscript n space equals space 1 over L integral subscript negative L end subscript superscript L f left parenthesis x right parenthesis space cos open parentheses fraction numerator n pi x over denominator L end fraction close parentheses space d x space comma space space space space space n equals 0 comma 1 comma 2.. d. a subscript n space equals space 1 over L integral subscript negative L end subscript superscript L f left parenthesis x right parenthesis open parentheses fraction numerator n pi x over denominator L end fraction close parentheses space d x space comma space space space space space n equals 1 comma 2 comma 3.. e. a subscript n space equals space 1 over L integral subscript negative L end subscript superscript L f left parenthesis x right parenthesis space s e n open parentheses fraction numerator n pi x over denominator L end fraction close parentheses space d x space comma space space space space space n equals 1 comma 2 comma 3..

1 Resposta

  • Isabelly

    b.

    a subscript n space equals space 1 over L integral subscript negative L end subscript superscript L f left parenthesis x right parenthesis space cos open parentheses fraction numerator n pi x over denominator L end fraction close parentheses space d x space comma space space space space space n equals 0 comma 1 comma 2..

    Explicação passo-a-passo:

Clique aqui para adicionar a sua resposta.