Estudamos algoritmos preditivos com base em (1) modelos de regressão linear e (2) modelos de regressão

logística. Esses modelos são aplicados em situações bem distintas, que dependem, essencialmente, da natureza da variável resposta, também chamada de variável dependente. Com esses dois modelos em mente, analise as afirmativas a seguir. Modelos de regressão logística simples são usados na predição de uma variável resposta qualitativa quando há mais do que uma variável de entrada. Modelos de regressão linear simples são usados na predição de uma variável resposta qualitativa quando se considera apenas uma variável de entrada. Um possível modelo de regressão logística simples para a predição da probabilidade de inadimplência é: em que e são os coeficientes do modelo, , o gasto médio mensal da pessoa com cartão de crédito e , o valor esperado para a probabilidade de a pessoa ficar ou não inadimplente com o pagamento das faturas do cartão. O método comumente usado para calcular os valores dos coeficientes e é o Método da Máxima Verossimilhança. Para isso, pode-se fazer uso do software estatístico R.

1 Resposta

  • Paulricar

    está correta as respostas 2,3e4

Clique aqui para adicionar a sua resposta.