As Transformações (e consequentemente, as Transformações Lineares) estão entre as principais aplicações

da Álgebra Linear. Lembrando o conceito: dados dois conjuntos, não vazios, U e V, uma aplicação (transformação) de U em V é uma "lei" que associa a cada elemento de U um único elemento de V. Se denotamos por F esta aplicação, então, o elemento associado é denotado por F(u), que está em V, denominado a imagem de u pela aplicação F. Para a Transformação a seguir, responda ao que se pede:

T: R³ --> R³, T(x, y,z) = (x + y + z, x - y + z, x + y - z)

a) A Transformação é Linear? Comprove sua resposta por meio da aplicação da conservação, ou não, das Operações de Soma e Multiplicação.
b) Qual o Núcleo de T [ Ker(T) ]?
c) Qual a dimensão do Núcleo [ dim(Ker) ]? A Transformação é injetora?
d) Qual a Imagem de T [ Im(T) ]?
e) Qual a dimensão da Imagem [ dim(Im) ]? A Transformação é sobrejetora?
f) Qual a matriz da Transformação?
g) Quais seus autovalores?
h) Quais seus autovetores?

Para a Transformação a seguir, responda ao que se pede:

T: R³ --> R³, T(x, y,z) = (x + y + z, x - y + z, x + y - z)

a) A Transformação é Linear? Comprove sua resposta por meio da aplicação da conservação, ou não, das Operações de Soma e Multiplicação.
b) Qual o Núcleo de T [ Ker(T) ]?
c) Qual a dimensão do Núcleo [ dim(Ker) ]? A Transformação é injetora?
d) Qual a Imagem de T [ Im(T) ]?
e) Qual a dimensão da Imagem [ dim(Im) ]? A Transformação é sobrejetora?
f) Qual a matriz da Transformação?
g) Quais seus autovalores?
h) Quais seus autovetores?

RESPONDER

Felipe está aguardando sua ajuda, Clique aqui para responder.